

Baylor College of Medicine

Meet Me at the Crossroads: The intersection of genetics and fetal intervention

Samantha Stover, MS, CGC

Clinical Instructor & Certified Genetic Counselor
Baylor College of Medicine & Texas Children's Maternal-Fetal Center
Texas Children's Pavilion for Women
Houston, TX

Disclosures

Salary partially funded by PrenatalSEQ study (#R01HD055651)

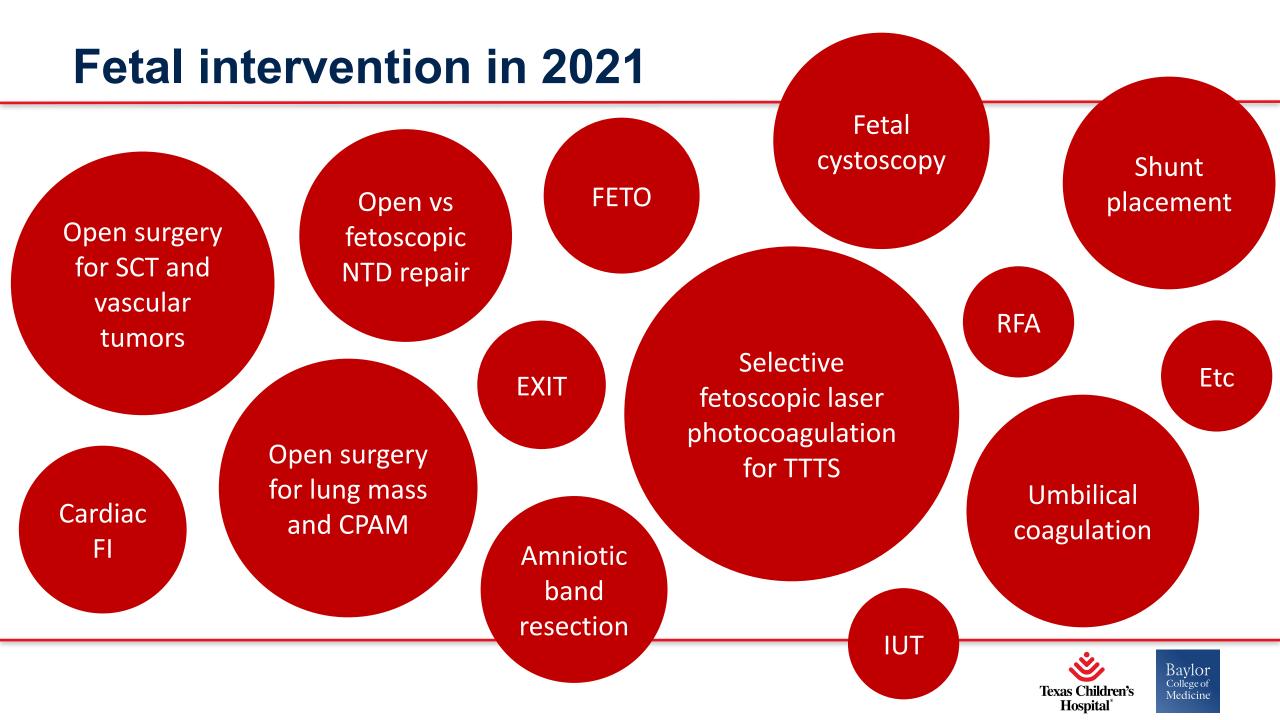
Objectives

- Examine traditional involvement of genetics within the fetal intervention space
- Illustrate the need for involvement of genetic counselors and advanced prenatal testing when assessing patient candidacy for fetal intervention

A brief history...

- The Fetal Treatment Center for UCSF established in the early 1980s by Dr. Michael Harrison
 - First successful open surgery for LUTO 1981
 - Open surgical resection of fetal congenital adenomatoid malformation – 1984
 - ♣ First open repair of CDH 1989
- Many major centers then followed in numerous states
- UK and Europe later followed and Eurofetus was formed

A brief history...


- North American Fetal Treatment Network est. in October 2004 by four perinatologists
- MFMs began leading many fetal centers in the country with their pediatric surgery colleagues
- ❖ ACOG Committee Opinion #501 (2011)
 - Commentary by ACOG and AAP regarding best practices for fetal care centers, such as having oversight, role of research, proper informed consent, multidisciplinary teams, accumulation of outcomes data

Fetal therapy breakthroughs

- Fetal intervention for hemolytic disease of the fetus and newborn (HDFN) developed after decades of trial and error
- Twin-to-twin transfusion (TTTS) trial in Europe showed laser therapy ideal over then gold standard, amnioreduction
- Management of Myelomeningocele (MOMS) trial in the US
 - Vanderbilt, UCSF, CHOP with GWU monitoring data
- And many others...

Eligibility for fetal intervention

- Common inclusion criteria
 - Anomaly in which FI would improve outcome
 - No significant maternal health/obstetrical history
 - Availability within specific window
 - Singleton pregnancy
 - Support system
- Common exclusions include presence of other anomalies, significant maternal history, and multiples

Eligibility for fetal intervention

- Genetic testing criteria varies across protocols and centers
- Clinical trials and minimal testing requirements
 - MOMS: Karyotype
 - FISH adequate if pushing deadline for surgery
 - TOTAL and other FETO trials: Karyotype or CMA
 - RAFT: Karyotype or CMA
- Other forms of FI have limited or no requirements (ex: FISH for LUTO)

Examples of inclusion/exclusion criteria

- TOTAL trial: Anatomically and chromosomally normal fetus
- Fetoscopic NTD: Normal karyotype and/or normal chromosomal microarray (CMA)
 - FISH acceptable if the patient is at 24 weeks or more
- FETO (TCH): Fetal aneuploidy, known structural genomic variants, other major fetal anomalies, or known syndromic mutation
- RAFT: No significant pathogenic or likely significant pathogenic findings on Karyotype or Microarray

A day in the life of a fetal center GC

Lower urinary tract obstruction

- G1P0 at 17w0d referred for megacystis
- No prenatal screening yet
- Family history of CAKUT
 - ⁴ 1st brother's son Prune Belly syndrome, currently in NICU
 - 2nd brother's son IUFD, suspected renal disease but limited information

Lower urinary tract obstruction

- Multiple anomalies:
 - Dilated posterior urethra and bilateral mild hydronephrosis
 - Suspected CNS anomaly cerebellum appeared abnormal with an increased cisterna magna
 - Complex CHD ventricular septal defect, small pulmonary artery, and possible abnormal position of the aorta
- Amniocentesis possible
 - FISH and karyotype trisomy 13
- Bladder shunt not offered

Neural tube defect

- G1P0 at 20w3d referred for suspected spina bifida
- NIPT low risk for common trisomies/SCAs, MSAFP 7.2 MoM
- Family history of recurrent pregnancy loss
 - Mother with history of SABx4 (all first trimester)
 - Only child
- US/MRI: myeloschisis (beginning at L3 and extending through the sacrum), Chiari II malformation, and mild supratentorial ventriculomegaly
- Patient elected amniocentesis as desired fetoscopic NTD repair

Neural tube defect

- Karyotype results:
 - 46,XY,t(12;14)(q22;q32.1)
- Many internal discussions are they ineligible now?
 - Protocol stated normal karyotype or CMA
 - Decided CMA would need to be performed to determine candidacy
- CMA normal
 - Agreed to offer FI based on this result and that the translocation was likely familial given the history of RPL
- Patient confirmed to be balanced translocation carrier

- G1P0 at 28w3d referred for FETO evaluation
- NIPT low risk for common trisomies
- Amniocentesis results pending at time of referral
- No pertinent family history
- US/MRI:
 - Severe IUGR (1st %ile)
 - Left CDH (O/E TFLV 20-23%), 38% liver herniated into chest
 - Relatively large and bilaterally symmetric germinal matrix pseudocysts

- Results returned after first day of evaluations, but 1 hour before GC
- Abnormal CMA:
 - 3.16 Mb interstitial deletion of 15q25.2q25.3
- 15q25 deletion syndrome (OMIM 614294)
 - CDH, intellectual disability, neurodevelopmental/psychiatric conditions, poor growth, short stature, Diamond-Blackfan anemia, and cryptorchidism
- No longer FETO candidate
- Family elected palliative care

- G6P3023 at 22w5d referred for FETO eval
- NIPT low risk for the common trisomies, monosomy X, triploidy/vanishing twin, and 22q11.2 deletion syndrome
- Niece with Down syndrome, cleft lip/palate, and CHD
- US/MRI:
 - Large left-sided CDH containing liver, stomach, spleen, and bowel
 - ❖ O/E TFLV of 60.8%, 26% of the liver herniated into the chest

- Small copy number gain of 483 Kb at 1p32.3
 - Maternally inherited
 - No known disease association with this region
 - Likely a benign familial copy number variant
- Discussion amongst the team (many, many discussions)
 - Protocol stated known microdel/dup syndromes are exclusions
 - Since CNV expected to benign, still considered candidate for FETO after input from genetics team

Cardiac fetal intervention

- Aortic valvuloplasty and atrial septostomy
 - Offered by certain centers in the US with variable genetic testing requirements
- Initially diagnostic testing not required prior to CFI at our institution
 - Testing recommended (particularly FISH) but did not need karyotype or CMA results in advance due to timing of procedure and need to move quickly
- ... but sometimes things need to change

Cardiac fetal intervention – case 1

- Critical aortic stenosis with evolving features of hypoplastic left heart syndrome
 - Fetal aortic balloon valvuloplasty
- Amniocentesis performed same day as CFI
- Post-op: pericardial effusions (drained), numerous moments of bradycardia, ascites/scalp edema, and signs of fetal anemia
 - IUFD on POD1
- Amniocentesis results:
 - Mosaic tetraploidy (92,XXYY/46,XY)
 - Detailed review of available cells showed ~60% of cells tetraploid

Cardiac fetal intervention – case 2

- Critical aortic stenosis, abnormal mitral valve, intact atrial septum, dilated left ventricle with severe dysfunction, endocardial fibroelastosis, IUGR
- Amniocentesis a few days before CFI procedure FISH required due to critical AS/IUGR in a female fetus
- Normal FISH and aortic valvuloplasty scheduled
- Final amniocentesis results
 - CMA: contiguous regions of AOH on 8, data suspicious for low level T8M
 - Karyotype normal (46,XX) T8M confirmed on postnatal blood sample
- Numerous other cases of chromosome abnormalities prompted team discussion and change – now require karyotype/CMA before CFI

Persistent fetal anemia

- G1P0 at 26w5d referred due to concerns for fetal anemia
 - Elevated MCA-PSV 1.8 MoM suggestive of fetal anemia
 - Cardiomegaly, placentomegaly, rim of pericardial effusion
- Underwent cordocentesis/IUT 7x due to unexplained fetal anemia
- Postnatal testing identified biallelic SPTA1 variants:
 - Hereditary spherocytosis
- Presented in next pregnancy with fetal anemia
 - Diagnosis helped prepare team for what to expect (i.e., frequent IUTs and need for frequent transfusions after birth)

Nonimmune fetal hydrops

- G2P1001 at 21w5d referred for bilateral pleural effusions
- Amniocentesis performed and all studies normal:
 - FISH, CMA, AFAFP, viral PCR
 - Rapid trio WES ordered
- While waiting for results, patient had 2nd opinion and fetus had developed hydrops (PEs, ascites, skin edema)
- De novo likely pathogenic variant identified in FLT4
 - Lymphatic malformation 1 (OMIM 153100)
- Provided explanation for NIHF and persistent fluid collection despite continued interventions

Take home messages

- Genetics has played an important role in the history of fetal intervention, and is definitely not going away!
- As both fetal therapy and prenatal diagnostic testing continue to advance, GCs are needed in this space more than ever:
 - Educate the patients <u>and</u> team on complex genetic testing results and the implications
 - Engage in team discussions regarding the ethics of offering vs denying FI in the setting of abnormal results
- Reality is messier than what was expected keep an open mind

Acknowledgements

❖ A huge thank you to the entire TCH Fetal Center team my fellow

FC GCs, and our patients

Contact information

- Samantha Stover, MS, CGC
 - **832-826-7357**
 - srstover@texaschildrens.org
- TCH Maternal Fetal Medicine and TCH Fetal Center
 - https://women.texaschildrens.org/program/maternal-fetal-medicine
 - https://women.texaschildrens.org/program/texas-childrens-fetal-c enter

References

- Moise KJ Jr. The history of fetal therapy. Am J Perinatol. 2014 Aug;31(7):557-66.
- Adzick NS, et al. A randomized trial of prenatal versus postnatal repair of myelomeningocele. N Engl J Med. 2011 Mar 17;364(11):993-1004.
- Committee opinion no. 501: Maternal-fetal intervention and fetal care centers. Obstet Gynecol. 2011 Aug;118(2 Pt 1):405-410.

Thank you!

